

IBG Bio Fertilizer Series

Sustainable Agriculture through Innovative Biotechnology

What is inside the natural soil?

Beneficial microbes.

Fungi, actinomycete, small insect.

Organic matter.

Macro and micro minerals.

Water. 2^{2}

What is inside the natural soil?

- 1. Microbe.
 - Decompose organic matter.
 - Nutrient recycle.
 - Humus formation.
 - Nitrogen fixing.
 - Promote plant's growth.

2. Organic matter.

- As a source of nutrient pool for plant.
- As a source food for bacteria.
- Recover soil nutrient.

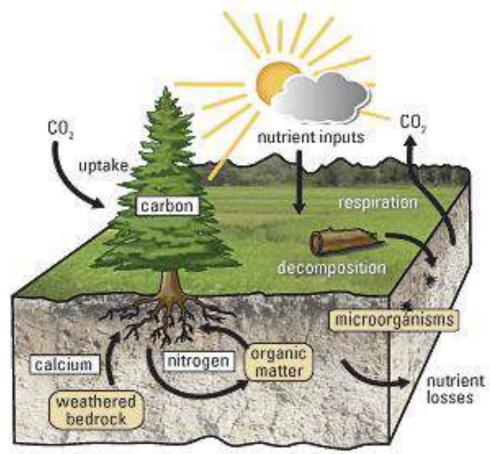
What is inside the natural soil?

- 3. Macro and micro nutrient.
 - Carbon, Hydrogen, Oxygen
 - Nitrogen
 - Phosphorus
 - Potassium
 - Calcium
 - Magnesium
 - Sulphur

- Manganese
- Copper
- Zinc
- Molybdenum
- Boron
- Chlorine
- Iron

Important for plant growth, food formation, etc.

Why soil protection is important?

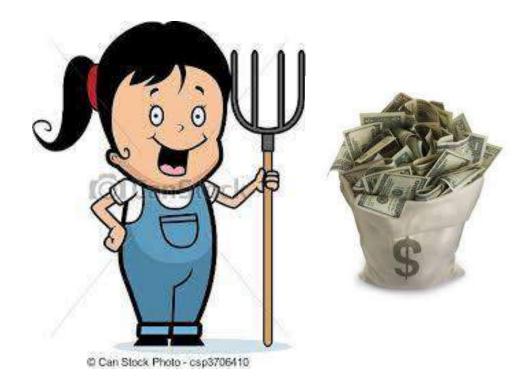

- Soil provide moisture, nutrients, air and protection to the plant.
- Plant Provide food and shelter to human.
- Human but human provide non other than chemical fertilizer hence jeopardizing the soil health.

Why soil protection is important?

• When the soil was damaged due to acidification, its immune system will be weaken. An unhealthy soil will not produce a vibrant plant as the plant will suffered from a lot of disease. Hence the plant will not provide quality food to human. Therefore, soil recovery and human's quality life is important.

Virgin forest stage.

Plantation clearing stage.


The importance of chemical fertilizer.

 Soils contain natural reserves of plant nutrients, but these reserves are largely in forms unavailable to plants, and only a minor portion is released each year through biological activity or chemical processes. This release is too slow to compensate for the removal of nutrients by agricultural production and to meet crop requirements. The plant require 16 nutrients in order to grow well, this causing mass nutrient removal from the soil from which the nutrient has to be replenish for the plant to survive.

Chemical fertilizer and soil health.

• Therefore, chemical fertilizers are designed to supplement the nutrients already present in the soil. The use of chemical fertilizer, organic fertilizer or biofertilizer has its advantages and disadvantages in the context of nutrient supply, crop growth and environmental quality.

Pros and cons of chemical fertilizer.

Pros.

- Crops grows fast and big.
- Adequate nutrient.
- Support plant growth.
- Increase harvest yields.

Pros and cons of chemical fertilizer.

Cons.

- Toxicity and pollution.
- Results in depleted soil, and results in acidity.
- Interfere with natural soil ecology.

Prolong use.

Damaged soil vs healthy soil.

Type of fertilizer.

Chemical fertilizer.

Medicine.

disadvantages.

Effect fast, but a

lot of

 Prolonged use of chemical fertilizer = Prolonged use of medicine = Although is fast and efficient but a lot of disadvantages.

Type of fertilizer.

Organic elements.

Effect slow, no disadvantages.

16

What is IBG biofertilizer

The best solution for soil recovery

What is inside the IBG bio fertilizer?

A CONTRACTOR OF THE OWNER OF TH

Beneficial microbes of no less than 10^7 cfu/ml.

WISEGEEK

Aloe vera, seaweed extract, humic acid, amino acid, fish emulsify.

- Biofertilizer in the market has to contain minimum 1 million cfu/g bacteria in order to be classified as biofertilizer. With our technology, IBG biofertilizer has attain at least 10 million cfu/g of bacteria.
- Moreover, microbes cannot survive alone without organic matter. It has to be complemented with organic matter and macro and micro nutrient in order to efficiently recover the soil. Our perfect blend of organic matter will enable the microbes to live inside the soil.
- These two combination is equal to what is originally inside the soil. IBG biofertilizer is able to provide a holistic element for the plant to grow and absorb better.

IBG MANUFACTURING SDN. BHD. 199801017236 (473365-H)

No. 3, Jalan TPP 3, Taman Perindustrian Putra, 47130 Puchong, Selangor Darul Ehsan. Tel: +603 - 8066 2875 Fax: +603 - 8052 1303 E-mail: info@ibgv.com.my

IBG Manufacturing Sdn. Bhd. accredited by Standards Malaysia under accreditation number 494 for Chemical and Microbiology Tests

TEST REPORT

Customer:	Production Department IBG Manufacturing Sdn Bhd	Lab Number Date received	: IBG-QC-02523 : 10 th July 2023
	No. 3, Jalan TPP 3, Taman Perindustrian Putra, 47130 Puchong,	Date tested Date reported	: 10 th – 12 th July 2023 : 12 th July 2023
	Selangor Darul Ehsan.	Page 1 of 1	

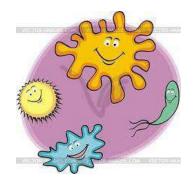
Sample description : Liquid Biofertilizer Sample marking : Durlan 05/07/23 MAS-F030-2307-01

Test parameter	Method	Unit	Results
Total plate count, PCA @ 37°C for 48 hours	In House Method, TM-IBG-03-001, based on AS 1766.1.3, 1991	cfu/g	1.1 x 10 ⁸
pH @ 23.0°C	In House Method, TM-IBG-02-004, based on pH meter	-	4.02
*Total Organic Matter	In House Method, TM-IBG-02-025, based on AOAC 967.05, MS 417: Part 2: 1994, Clause 3 & MS 417: Part 2: 1994, Clause 5	% w/w	55.10

* Not accredited

Total plate count: 10⁷ cfu/g

LEE CHOON HOONG Senior Microbiologist BSc (Hons) in Biomedical Science



The results reported relate only to the items tested as received. This test report shall not be reproduced except in full without the approval of the laboratory

An Innovation in Biotechnology for Green World www.ibgbiofertilizer.com.my

Content of IBG bio fertilizer.

Beneficial microbes - Improve absorption and decompose organic matter, no less than 10⁷ cfu/ml.

Aloe vera, seaweed extract, humic acid, amino acid, fish emulsify -Improve soil organic matter content.

Application of IBG bio fertilizer.

Dosage.

70%

Please do take note that IBG biofertilizer is applied as replacement 30% from chemical fertilizer. So your material cost does not change after using IBG biofertilizer.

30%

Chemical fertilizer.

IBG bio fertilizer.

Why choose IBG bio fertilizer?

- Increase plant productivity.
- Provide an economically viable support.
- Soil health maintenance.
- Effective in helping plant to absorb nutrients.
- Reduces the dosage of chemical fertilizers.
- Reduces soil-borne root diseases of plants.
- Save on fertilizer storage capacity.

A healthy person will less likely A healthy plant will less likely to get any disease. get any disease.

After the soil was treated with IBG bio fertilizer, microbes can help in organic matter decomposition and soil mineralization. It release the Nitrogen and Phosphorus during decomposition and thus the N, and P fertilizer can be reduced.

RESEARCH

EFFECTS OF BIOFERTILIZERS COMBINED WITH DIFFERENT SOIL

International Journal of Agriculture: Research and Review. Vol., 2 (6), 699-704, 2012 ISSN 2228-7973 ©2012 ECISI Journals

BIOFERTILIZER AFFECTS YIELD AND YIELD COMPONENTS OF WHEAT NASRIN GHADERI-DANESHMAND¹, ABDOLMAHDI BAKHSHANDEH² AND MOHAMMAD REZA ROSTAMI^{3*}

I- Postgraduate of Ramin University of agriculture and natural resources. Ahwaz, Khouuzestan, Iran. 2- Professor of Ramin University of agriculture and natural resources, Ahwaz, Khouuzestan, Iran. 3- Postgraduate of college of agriculture and natural resources of university of Tehran, Karaj, Iran.

ECISI

*Corresponding Author Email: mr.rostami@ut.ac.ir

ABSTRACT: In order to study effects of biological fertilizers, chemical fertilizers and bacterial growth enhancers (PGRP) on yield and yield factors of wheat (Triticum aestivum) and to reduce chemical fertilizers and improve soil and plant nutrition, an experiment was carried out in research field of Agriculture and Natural Resources University of Ramin, Iran in crop year of 2009-2010. The experiment was performed in split plot-factorial design arranged in a complete randomized block design with three replications. In this study, chemical factor was the base plot in three levels (Control, half of local recommended and total local recommended) and the biological fertilizer (Nitroxin and bio-phosphor) were the secondary factors with three levels (Control, 0.5 and 1 liter per hectare). Results indicate that the use of biological fertilizers lead to significant differences in grain number per spike, grain weight, biological yield and harvest index. Combined ireatments of microorganisms (Aztv bacteria and Pesudomonas fluorescent) and chemical fertilizers had the greatest impact on the studied traits. Analyze of variance suggest that highest yield of grain was achieved by complete use of all three fertilizers in recommended fertilizer rate compared to control treatment. Overall, the results showed that, biological fertilizers have a significant role in improving yield and yield components of wheat, and Bio-fertilizers with chemical fertilizers may be useful to increase the yield and reduce environmental pollution.

Key words: wheat, yield, yield components, Biofertilizer,

INTRODUCTION Given the increasing world population, more than ever feel the need to increase food production. For this purpose, four solutions (increase in area under cultivation, yield per unit

While utilize Bio-fertilizers importing a large population of effective microorganisms in the

Numerous researches shows that the use of bio fertilizer does assist in plant growth and and de Bosch overall sustainable soil conservation in airb

terrestrial and 2 and N pollut:

Potential and Possible Uses

International Journal of Microbiology Research, ISSN: 0975-5276, Volume 1, Issue 2, 2009, pp-23-31

S.V.P.M. Coll ²Rai foundations ³Padmashree Dr. D.Y. Pa

4V.V.P. Engir ⁵Sindhu Maha Or. D. Y. Pal

Boraste A.¹, Vamsi K.K.², Jhadav A.³, Khaimar V ³

Biofertilizers: A novel tool for agriculture

The possible role of bio-fertilizers in agriculture

anianna Marozsán¹, Szilvia Veres², Éva Gajdos², Nórr

astry Corporation,

aricultural and Techr physiology,

of Bacterial and Fungal Biofertilizers Francesco Gentili Ari Jumpponen

INTRODUCTION

Chapter 1

During the past four decades we have witnessed the doubling of the hu-During the past four decades we have writtessed the doubling of the inclusion man population and a concurrent doubling of food production (Vance, 2001). Plant nutrition has played a key role in this dramatic increase in demand for and supply of food. Increases in crop production have been made possible through the use of commercial man-made fertilizers. The use of nitrogen (N) fertilizer has increased almost ninefold and phosphorus (P) more than fourfold (Vance, 2001). The tremendous increase of N and P fertilization, in addition to the introduction of highly productive and intensive agricultural systems, has allowed these developments to occur at relatively low costs (Schultz et al., 1995; Vance, 2001). The increasing use of fertilizers and highly productive systems have also created environmental problems such as deterioration of soil quality, surface water, and groundwa as air pollution, reduced biodiversity, and supp

fppt.

Abstra produ produ over vari WOR

In A ¢

aged

Research done by Universiti Malaya and other universities published at 19th December 2020

processes

MDPI

Article

The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions

Aaronn Avit Ajeng ¹⁽⁰⁾, Rosazlin Abdullah ^{1,*(0)}, Marlinda Abdul Malek ^{2,*}; Kit Wayne Chew ³⁽⁰⁾, Yeek-Chia Ho ^{4,5}⁽⁰⁾, Tau Chuan Ling ¹, Beng Fye Lau ¹ and Pau Loke Show ^{6,*(0)}

- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; aaronnavit@gmail.com (A.A.A.); tcling@um.edu.my (T.C.L.); bengfye@um.edu.my (B.E.L.)
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia
- ³ School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor 43900, Malaysia; kitwayne.chew@xmu.edu.my
- ⁴ Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; Yeekchia.ho@utp.edu.my
- ⁵ Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- ⁶ Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor 43500, Malaysia
- * Correspondence: rosazlin@um.edu.my (R.A.); marlinda@uniten.edu.my (M.A.M.); PauLoke.Show@nottingham.edu.my (PL.S.); Tel.: +60-3-7967-4360 (R.A.); +60-3-8921-2020 (M.A.M.); +60-3-8924-8605 (P.L.S.)

Received: 5 August 2020; Accepted: 10 September 2020; Published: 19 December 2020

Abstract: The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizers (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhanced girth size, chlorophyll content, with improved nutrient uptake by the seedlings. Histosol across all treatments has a high macronutrient content suggesting that the rate of chemical fertilizer application should be revised when planting using the particular soil. With the growth of the oil palm seedlings and soil nutrient with biofertilizers could enhance the growth of the oil palm seedlings and soil nutrient properties regardless of the soil orders.

Keywords: plant growth promoting rhizobacteria; oil palm seedlings nursery; biofertilizers; chemical fertilizer

1. Introduction

fppt.com

The agriculture sector is considered as one of the economy pillars in many developing nations [1]. However, continuous use of agrochemicals such as chemical fertilizers and pesticides in this sector is detrimental to human health such as infant methemoglobinemia [2] and which also cause ecological imbalance [3,4]. The use of chemical fertilizer will also cause air and ground water pollution resulting Processes 2020, 8, 1681

3 of 16

Biofertilizer B =

IBG Biofertilizer

The temperature ambience was 28–33 °C. The experiments were conducted in the Complete Block Design (CBD) with four replicates for each treatment in a single trial. Liquid biofertilizer A (BFA) (effective microorganisms: 1×10^7 CFU/mL) and biofertilizer B (BFB) (effective microorganisms: 1×10^6 CFU/mL) were purchased from local Malaysian manufacturers. BFA consists of *Bacillus* spp. such as *Bacillus anyloliquefaciens* strain MPA 1034 and *Bacillus tequilensis* strain 10b *Lactobacillus* spp.; *Azospirillum* spp. and *Rhizobium* spp. Meanwhile, BFB consists of a very diverse group of microbes: Actinomycetes such as *Kocuria thizophila*, *Arthrobacter methylotrophus*, *Bacillus* spp. such as *B. pumilus*, *B. subtilis* (subspecies Spizizenii), *B. vallismortis*, *B. Thurengiensis*, *B. mycoides*, *B. mucilaginosus*, *Brevibacillus* nuger and *Aspergillus awanori*; yeast such as *Saccharomyces cerevisiae* Hansen were also the beneficial microbes contained in the biofertilizer. The micro and macro nutrient with the organic matter of the biofertilizers were listed in Table 2. NPK blue with the formulation ratio of (12 N:12 P₂O₅:17 K₂O: 2 MgO + TE) was used as the chemical fertilizer. The experiment consists of three treatments: [TI] 100% of CF. [TI2] 70% CF + 30% BFA, and [T3] 70% CF + 30% BFB. The amount and dose of fertilizers applied was listed in Table 3. Treatments were done for four rounds (every 30 days).

Table 1. Chemical properties of histosol, spodosol, ultisol, and oxisol.

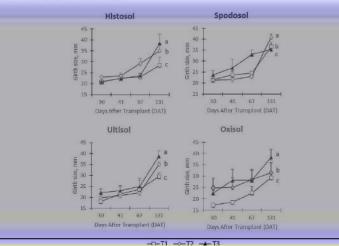
Soil Properties	Histosol	Spodosol	Ultisol	Oxisol
pН	3.23	5.49	3.83	4.33
Total N (%)	0.61	0.34	0.10	0.12
Availlable P (mg/kg)	75.81	36.66	25.99	32.78
Exchangeable K (mg/kg)	455.2	487.93	358.33	471.1

Table 2. The micro and macro nutrient, and the organic matter of the biofertilizer A and biofertilizer B.

Micro and Macro Nutrients	Biofertilizer A	Biofertilizer B		
N	7%	5-6%		
Р	6%	8-9%		
К	9%	10-11%		
Ca	2%	-		
Mg	1%	0.5-1.0%		
Su	1%	-		
Во	0.5%	0.9-1.1%		
Fe	50 ppm	282 ppm		
Cu	15 ppm	18.4 ppm		
Mn	10 ppm	35.8 ppm		
Zn	15 ppm	51.4 ppm		
Mo	12 ppm	-		
	Aloe vera	Aloe vera		
	Seaweed extract	Seaweed extract		
Organic matter	Fulvic acid	Humic acid		
	Amino acid	Amino acid		
	Protein	Fish emulsify		

Table 3. Chemical fertilizer and biofertilizer application. The biofertilizer was diluted with 200 mL of distilled water before applied to a single seedling.

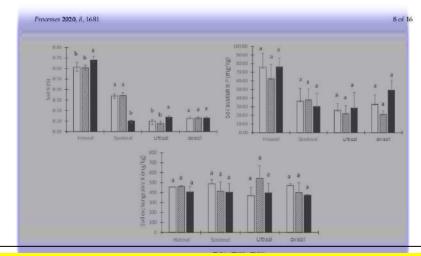
Month	Control Plot	Treatment Plot				
	Dosage per Palm (g seedlings 100% Chemical Fertilizer	⁻¹) (NPK 12-12-17-2 + TE) 75% Chemical Fertilizer	Biofertilizer (mL			
1	15	10	2			
2	20	15	2			
3	25	20	3			
4	30	25	3			

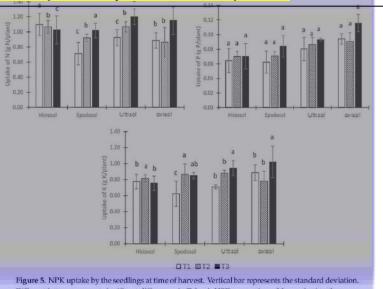

T1 = 100% chemical fertilizer

T2 = Biofertilizer A^{larses} 2020, 8, 1681

T3 = Biofertilizer B = IBG Biofertilizer st chlorophyll reading throughout the last two

after 30 DAT but increased after 41 DAT and show a slight change from 67 and 131 DAT. Seedlings in ultisol under the same treatment reached the highest peak at 41 DAT with the chlorophyll content reading of 63.18 but decreased to 62.50 at 131 DAT. A steady increase in the chlorophyll content was seen in seedlings under oxisol but it remained the lowest reading throughout the last three months during the treatment period. The addition of biofertilizers seems also to have a positive impact on the chlorophyll reading of the seedlings.

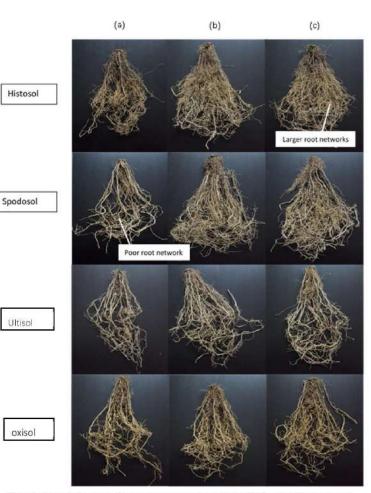

6 of 16


All seedlings in histosol, ultisol, and oxisol under T3 plots have the highest girth size telter across treatments do not differ significantly at p-value ≤ 0.05.

Soil	Treatment	ABG	Root	Root:ABG
	T1	57.97 ± 9.92b	$16.22 \pm 4.46a$	$0.28 \pm 0.03a$
Histosol	T2	$62.07 \pm 3.47a$	$16.10 \pm 3.31a$	0.26 ± 0.04 ab
	T3	$59.50 \pm 17.47 \mathrm{b}$	$15.09\pm3.61a$	$0.26 \pm 0.04b$
	T1	$49.62 \pm 14.32b$	$14.25 \pm 4.21a$	$0.29 \pm 0.02a$
Spodosol	T2	63.48 ± 7.08ab	$16.52 \pm 0.92a$	0.26 ± 0.02 ab
	Т3	$64.53\pm4.99a$	$15.84\pm1.17a$	$0.25 \pm 0.02b$
	T1	53.61 ± 3.80b	$11.70 \pm 0.68a$	0.22 ± 0.01 ab
Ultisol	T2	66.34 ± 2.50 ab	$15.20 \pm 1.26a$	$0.23 \pm 0.02a$
	T3	$70.39\pm7.98a$	$13.92 \pm 1.60 a$	$0.20 \pm 0.00b$
	T1	65.97 ± 4.61b	15.55 ± 2.95a	0.24 ± 0.06ab
Oxisol	T2	58.70 ± 11.13ab	$14.30 \pm 1.03a$	$0.25 \pm 0.02a$
	T3	$78.21 \pm 14.91a$	$16.44 \pm 0.95a$	$0.22 \pm 0.00b$

The highest ABG dry mass was obtained from oil palms seedlings treated under T3 under oxisol and ultisol.

The nitrogen content was significantly higher across all treatments especially in the T3 plots.



Different letters represent significant differences in Tukey's HSD comparison. Means sharing the same letter across treatments do not differ significantly at *p*-value ($p \le 0.05$).

Overall, seedlings planted in ultisol under T3 have the highest NPK intake.

From the present study, the addition of biofertilizers alongside with chemical fertilizers have shown not only enhanced oil palm seedlings growth in terms of the height, girth size, and chlorophyll, it also improves the nutrient uptake of the seedlings and soil nutrient status at a reduced rate of chemical fertilizer. Reduction on the rate of the chemical fertilizer may be needed to avoid over-fertilization of the oil palm seedlings.

(Aaronn, Rosazlin A, Tau Chuan L, et al. (2020).

9 of 16

Figure 6. Roots of oil palm seedlings at the end of treatment. (a)T1, (b) T2, and (c) T3. The roots of oil palm seedlings treated with T3 were more in number, longer with more root hairs followed by seedlings in T2 then 100% T1 plots.

4. Discussion

Processes 2020, 8, 1681

4.1. Growth Performance of Fronds

FAO in 2011 states that about 175.5 million tons of chemical fertilizer is used in agriculture to achieve an optimum crop yield [29]. The enormous amount of chemical fertilizers deposited into soil causes a severe pollution of the river and groundwater which poses serious environmental

COLLABORATION AGREEMENT

BETWEEN

MALAYSIAN AGRICULTURAL RESEARCH AND DEVELOPMENT INSTITUTE (MARDI)

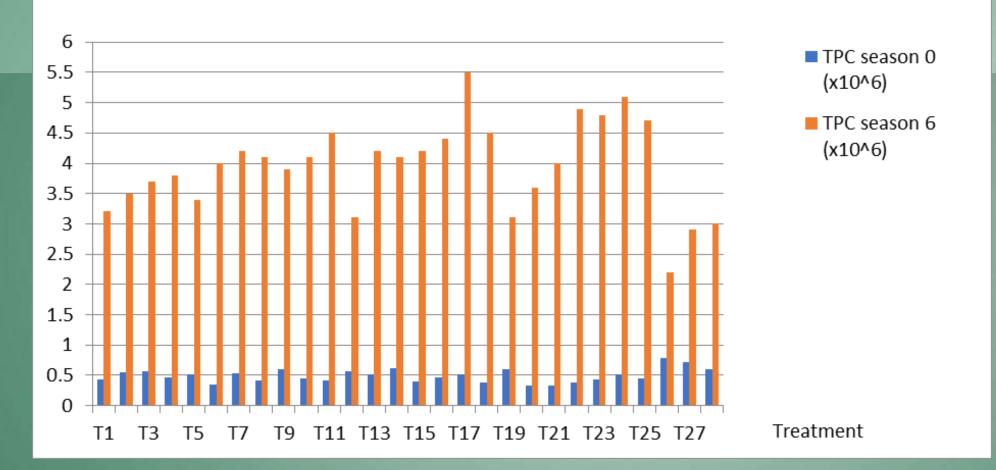
AND

IBG MANUFACTURING SDN. BHD.

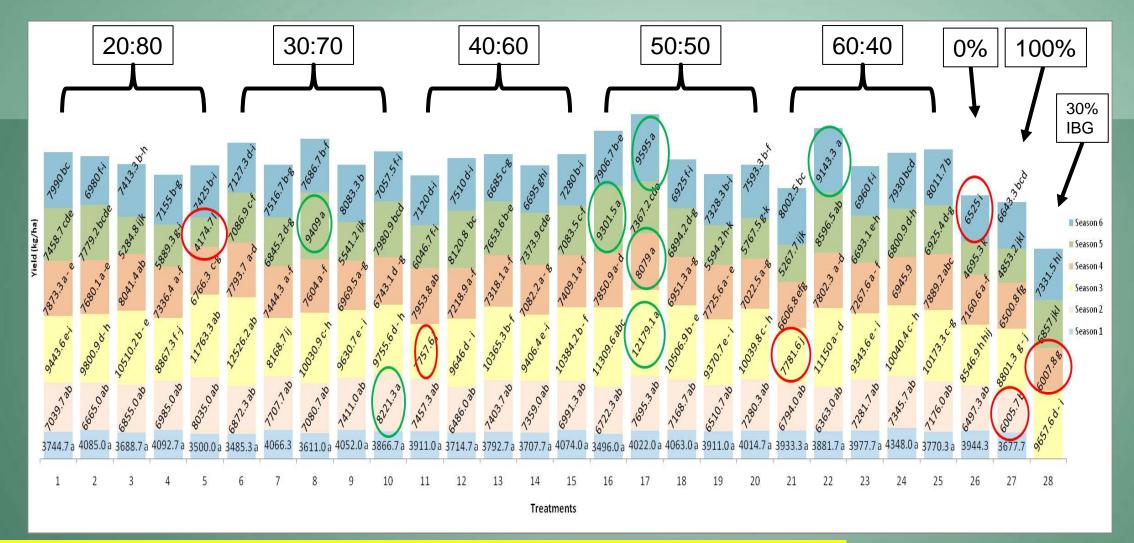
IN RELATION TO THE DEVELOPMENT OF IBG MULTIPURPOSE BIO FERTILIZER FOR RICE CULTIVATION

FINAL REPORT ON

DEVELOPMENT OF IBG MULTIPURPOSE BIO FERTILIZER FOR RICE CULTIVATION


15th February 2017 - 30th May 2020 (6 Seasons)

Abstract


A Collaboration Agreement to conduct research between MARDI and IBG Manufacturing • Sdn. Bhd. was signed on 11 April 2017. The study was conducted at MARDI Tanjung Karang for 6 planting seasons over a period of 40 months. The main objective of this study was to determine the combination of IBG Multipurpose Bio Fertilizer and subsidized fertilizer for rice crop fertilization needs. Findings show that the application of T17 treatment (combination of 50:50 ratio (IBG: subsidized fertilizer) with a rate of 5 liters/ha is the best treatment because the yield trend is significantly highest in season 3, 4 and 6. The difference in yield increase for the 6th season (last season) was 40% compared to T26 (control plot 0% fertilizer). The number of stalks was also significantly affected by the treatment and had a positive correlation with yield. The use of IBG products was also found to increase the microbial population in the soil and had a positive effect on nitrogen, phosphorus, potassium and conductivity in the soil.

		Total C	Total N	C:N Ratio	Total P	Available		Exchangea	ble (%)			Conductivity
Treatments	рН (%)	(%)	(%)	(%)	(%)	P (%)	к	Mg	Ca	Na	CEC (%)	(%)
T1	9.70	1.57	126.67	-55.19	581.31	1092.91	2073.68	-1.08	3.42	73.05	-0.86	2072.79
Т2	13.82	-20.45	58.97	-49.96	398.77	1261.82	1418.26	23.12	2.33	56.71	-12.35	741.91
Т3	10.00	-4.62	150.00	-61.85	714.79	1843.02	1587.30	-9.25	-29.12	44.08	-25.62	1745.97
Т4	14.10	0.73	113.89	-52.90	575.36	2381.31	1570.99	15.47	0.83	119.89	4.46	1222.89
Т5	10.92	-4.27	121.05	-56.69	510.59	1159.63	1140.35	-12.88	-40.93	11.28	-29.96	1251.22
Т6	10.44	-13.33	81.82	-52.33	266.53	869.88	941.22	15.98	4.45	25.30	-11.20	373.36
Т7	12.48	-9.81	128.57	-60.54	667.27	1438.54	1541.27	0.13	-5.68	81.41	-4.55	1359.66
Т8	28.87	11.02	91.89	-42.14	611.53	1023.24	1466.19	24.60	87.85	89.22	-4.55	568.25
Т9	-2.56	17.47	138.71	-50.79	658.46	1045.79	1355.63	42.50	-16.95	87.10	-2.04	469.23
Т10	9.33	12.20	130.30	-51.28	521.93	1034.07	1199.24	0.12	-16.52	35.17	-18.95	739.53
T11	5.81	-3.97	59.46	-39.78	184.58	508.57	817.56	12.97	-11.12	55.25	1.21	922.29
T12	12.41	12.60	162.50	-57.10	520.15	1184.76	1285.14	0.00	-6.84	25.71	-2.86	960.87
T13	9.96	6.67	83.33	-41.82	482.20	958.97	709.47	0.53	-7.78	14.93	-5.62	724.38
T14	11.76	-13.08	43.90	-39.60	230.77	770.98	899.24	20.98	15.12	33.33	-16.54	421.08
T15	13.63	7.51	100.00	-46.25	399.82	747.89	827.45	-1.96	-13.13	9.52	-4.12	659.58
T16	8.57	-8.05	87.88	-51.06	358.06	1152.45	1113.49	8.09	-9.29	87.59	-10.04	1342.86
T17	8.75	-8.62	97.44	-53.72	388.42	1070.20	1433.80	-2.98	-17.30	26.50	9.55	971.57
T18	9.65	-8.93	50.00	-39.29	464.61	1608.87	1149.62	20.12	-1.34	108.00	1.82	1567.87
T19	9.16	8.08	75.00	-38.24	377.71	943.23	674.43	-3.41	-11.63	-0.78	-1.72	500.68
Т20	17.51	-2.55	84.21	-47.10	638.92	1510.68	1456.35	18.29	5.57	69.72	-10.62	1085.19
T21	12.38	-2.85	81.58	-46.50	430.78	808.88	748.59	-10.40	-23.39	27.76	-3.98	633.22
T22	10.54	-8.96	75.68	-48.18	527.02	786.69	1064.29	9.79	-3.62	120.24	-19.60	1158.93
Т23	17.11	0.39	102.86	-50.51	569.94	1552.84	971.62	-2.54	-3.81	47.85	-11.20	963.26
T24	11.61	-3.79	105.71	-53.23	595.70	1323.33	1452.50	14.23	-10.14	122.09	-2.18	1198.94
T25	10.17	0.35	68.42	-40.42	251.03	1134.51	1153.38	-2.01	-15.80	37.60	-8.43	845.80
Т26	14.26	1.36	10.53	-8.30	43.88	135.09	-23.20	-19.71	-26.00	-18.07	8.61	-22.62
T27	0.56	-2.81	0.00	-2.81	-15.04	211.58	-32.11	-33.14	-41.56	-26.32	20.00	-42.47
T28	8.65	4.00	20.00	-13.33	56.00	66.49	-4.44	-3.74	-42.44	-3.16	6.52	-4.76
Average	10.86	-1.69	85.80	-44.93	414.99	1013.19	1069.49	4.01	-10.22	45.19	-5.88	806.40

Changes in pH probably induced changes in the microbial community structure and functionality which leads to the reduction in total soil carbon, total phosphate and available phosphate. The product which contains nitrogen fixation bacteria gave a great increased in total nitrogen and contributed to the changes in soil C:N ratio.

The 3 years (6 seasons) field trial using IBG biofertilizer revealed a significant increase in soil bacteria. This was reflected in Figure 1 where the trend revealed that the treated plots have much higher TPC than untreated plots (control plots).

- Combined season analysis suggests there is no significant difference in season 1 (Figure 8).
- As entry to season 2, a significant result as T10 contributed the highest significant yield compared to control.
- A trend can be observed in both season 3 and 4 as T17 contributed to highest significant yield. This may suggest the product application achieved stability in season 3.
- In season 5, T16 contributed to the highest yield. T16 is slightly lower concentration compared to T17.
- fpiFinally, in season 6, T17 and 22 contributed to the highest significant yield compared to T26. The difference is at least 40%.

INSTITUT PENYELIDIKAN DAN KEMAJUAN PERTANIAN MALAYSIA Malaysian Agricultural Research and Development Institute MARDI Seberang Perai Beg Berkunci No. 203 Pejabat Pos Kepala Batas 13200 Kepala Batas, Pulau Pinang MALAYSIA

MARDI Tel: 04-575 7330 / 9920 / 8402 Faks: 04-675 1725 Laman Web: www.mardi.gov.my Email : amer@mardi.gov.my

Rujukan Kami : MDI/PR2/PA/29-02 Tarikh : 11 Disember 2020

Ketua Pegawai Eksekutif IBG MANUFACTURING SDN BHD No.3 Jalan TPP 3,Taman Perindustrian Putra, 47130 Puchong,Selangor

UP: Dato' Yeat Siaw Ping

Melalui

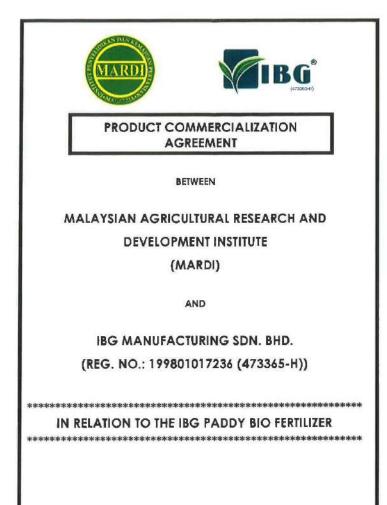
Pengarah Pusat Penyelidikan Padi dan Beras Ibu Pejabat MARDI 43400 Serdang Selangor Darul Ehsan DR. ASFALIZA BT. RAMLI Pengarah Pusat Penyaldikan Padi & Beras MARDI

YBrs Dato'

Laporan Akhir Projek Kolaborasi MARDI-IBG MANUFACTURING SDN BHD

Adalah dimaklumkan, surat dari pihak MARDI MDI/PR2/PA/29-02 adalah dirujuk.

2. Setelah perbincangan dan pembentangan laporan hasil kajian, dengan ini pihak MARDI telah memenuhi obligasi 6.1 dan 10.1 seperti termaktub dalam perjanjian kolaborasi bertarikh 11 April 2017 dan bersama-sama ini disertakan laporan akhir kepada pihak IBG MANUFACTURING SDN BHD.


3. Kerjasama pihak YBrs Dato' didahului dengan ucapan ribuan terima kasih

(DR.HARTINEE BINTI ABBAS) Timbalan Pengarah Program Agronomi dan Sistem Pengeluaran, (PR2) Pusat Penyelidikan Padi dan Beras MARDI Pulau Pinang

Ringkasan Laporan Kajian

Satu Perjanjian Kolaborasi untuk menjalankan kajian di antara MARDI dan IBG Manufacturing Sdn. Bhd. telah dimeterai pada 11 April 2017. Kajian ini dilaksanakan di MARDI Tanjong Karang selama 6 musim penanaman dalam tempoh jangkamasa 40 bulan. Objektif utama kajian ini ialah untuk menentukan kombinasi IBG Multipurpose Bio Fertilizer dan baja subsidi untuk keperluan pembajaan tanaman padi. Dapatan kajian menunjukkan aplikasi rawatan T17 (kombinasi nisbah 50:50 (IBG:baja subsidi) dengan kadar 5 liter/ha merupakan rawatan yang terbaik kerana trend hasil yang tertinggi secara ketara pada musim 3, 4 dan 6. Perbezaan peningkatan hasil bagi musim terakhir iaitu ke-6 adalah sebanyak 40% berbanding dengan T26 (plot kawalan tiada pembajaan). Bilangan tangkai turut dipengaruhi secara ketara oleh rawatan dan mempunyai kolerasi positif dengan hasil. Penggunaan produk IBG juga didapati turut meningkatkan populasi mikrob di dalam tanah yang turut mempengaruhi peningkatan positif terhadap nitrogen, fosforus, kalium dan konduktiviti di dalam tanah.

CONFIDENTIAL

to as this "Agreement").

This Product Commercialization Agreement dated

BETWEEN

MALAYSIAN AGRICULTURAL RESEARCH AND DEVELOPMENT INSTITUTE a statutory body incorporated in Malaysia under the Malaysian Agricultural Research and Development Institute Act 1969 [*Act 11*] and having its headquarters office at MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, (hereinafter referred to as "MARDI") of the one part;

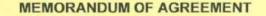
AND

IBG MANUFACTURING SDN. BHD. (Company Registration No.: 199801017236 (473365-H)) a business registered under the law of Malaysia and having its registered address at Suite 9-13A, Level 9, Wisma UOA II, Jalan Pinang, 50450, Kuala Lumpur, Wilayah Persekutuan and its business address at No. 3, Jalan TPP3, Taman Perindustrian Putra Puchong, 47130, Selangor (hereinafter referred to as "the Company") on the other part.

MARDI and the Company are hereinafter referred to as "the Parties" collectively and each as "the Party".

WHEREAS:

- A. MARDI and the Company has entered into the Collaboration Agreement in relation to the "Development of IBG Multipurpose Bio Fertilizer for Rice Cultivation" dated 11 April 2017 (hereinafter referred to as the "Collaboration Agreement"). Pursuant to Clause 13 of the Collaboration Agreement, the Parties agree that any future commercialization of IBG Multipurpose Bio Fertilizer in relation to the rice cultivation shall be formalized and secured in a separate written agreement detailing the rights and responsibilities of the Parties, including any financial commitments (if any).
- B. Pursuant to the above, the Company is desirous to produce, market, distribute and sell the IBG Multipurpose Bio Fertilizer for rice cultivation in any territory / country in the world and MARDI agrees for the Company to lead the commercialization of the IBG Multipurpose Bio Fertilizer subject to the terms and conditions as stated in this Agreement.
- C. For the purpose of the Company commercializing the IBG Multipurpose Bio Fertilizer pursuant to this Agreement, both Parties agree to name and commercialize the IBG Multipurpose Bio Fertilizer for rice cultivation as "IBG Paddy Bio Fertilizer" (hereinafter referred to as "the Product") subject to the terms and conditions hereinafter set forth in this Agreement.



Kilang Beras Rakyat Sekinchan Sdn. Bhd.

May, 2022 7.84 mt/ha November, 2022 8.27 mt/ha

BETWEEN

MALAYSIAN PALM OIL BOARD

AND

IBG MANUFACTURING SDN BHD

ON

THE RESEARCH & DEVELOPMENT OF ENDOPHYTIC BACTERIA AS LIQUID FORMULATION FOR CONTROLLING Ganoderma AND OTHER PLANT DISEASES

UNIVERSITI M A L A Y A

MEMORANDUM OF AGREEMENT

ON

RESEARCH COLLABORATION

BETWEEN

UNIVERSITI MALAYA

AND

IBG MANUFACTURING SDN. BHD. COMPANY REGISTRATION NO.: 199801017236 (473365-H)

FRIDAY SEPTEMBER 15, 2017 • THEEDGE FINANCIAL DAILY FD

16 WORLD BUSINESS

RM 420 million

...use less nitrogen-based fertilizer

Bayer bets on agro-biotech

It will jointly develop biological solutions to use less nitrogen-based fertiliser

BY P J HUFFSTUTTER

CHICAGO: Germany's Bayer AG, one of the world's biggest agri-cultural chemical companies, is joining a US\$100 million (RM420 million) bet that the next big breakthrough in crop fertilisers will be found inside a biological Petri dish.

Its Bayer LifeScience Center division, along with biotech firm Ginkgo Bioworks, is forming a start-up to focus on developing biological solutions to reduce the use of ni-

trogen-based fertiliser, or make farmers' use more efficient, company officials said this week.

Series A investment from the two companies and hedge fund Viking Global Investors LP. The funding round closed on Wednesday. Bayer and Ginkgo Bioworks officials declined to discuss financial details or individual investment amounts.

The still unnamed business will focus on plant-based microbes, particularly finding ways for mi-

croorganisms to help plants and the soil assimilate nitrogen molecules from the air or other sources, The venture will be backed via a Gingko Bioworks chief executive officer (CEO) Jason Kelly said in an interview.

> The effort is part of a broader push in agricultural research to harness the microorganisms in plants and soil and, among other things, use them to improve crop yields or allow plants to thrive on lower amounts of fertiliser.

Reducing the amount of nitro-

gen fertiliser needed to feed plants could ease environmental concerns over water contamination from nitrogen fertiliser run-off and related greenhouse gas emissions, company officials said.

Michael Miille, a vice-president at Bayer Crop Science's biologics group, said launching this venture as a start-up was intended to keep it more nimble.

"Everything is designed for speed," said Miille, who will serve as interim CEO. - Reuters

IN BRIEF

VW CEO says has no plans to divide up the group

FRANKFURT: Volkswagen (VW) has no plans to follow local rival Daimler in considering changing the group's legal structure, its chief executive officer (CEO) said, even as the company undergoes the biggest transformation in its history. The world's largest vehicle maker by sales said on Monday it was stepping up the pace on its electric-car programme, announcing more than €20 billion (RM100 billion) of new investments over the next 12 years. Asked by reporters at the Frankfurt auto show whether he could imagine following rivals in looking at changing the group's structure, CEO Matthias Mueller said: "Others are always faster than

DISTINCTIVE ADVANTAGES

- 1. Improve soil organic matter utilization, thus reduce soil erosion
- 2. Improve transportation of nutrients by roots' natural secretion of growth factor elements by microbes
- 3. Minimize losses caused by run-off through the Phosphorus and Potassium Releasing Bacteria
- 4. Enhances plant growth
- 5. Increase inflorescence rate and the female ratio
- 6. Increase fruit weight and quality
- 7. Provide non-acidic nitrogenous fertilizer

All the effects above can be seen in 3 months - 3 years after application

IBG Manufacturing Sdn. Bhd.

IBG Manufacturing Sdn. Bhd. has its plant setup in Malaysia since 1998. It is incorporated in July 2004, under IBG Bio Ventures Sdn. Bhd. IBG Manufacturing paid up capital is RM 2 million.

Our philosophy :

"Innovative $\underline{B}_{iotechnology}$ for \underline{G}_{reen} world will ultimately benefit to our human kind "

AWARDS & CERTIFICATIONS

EVENTION AND A DEPENDENCE OF ADJUACED OF A

Gold Medal Award inITEX99'(Malaysia)InternationalInvention,Innovation & IndustrialDesign 1999)for theinventionofBioFertilizer.

	CEI	RTIFICATE OF FILING
	APPLICANT APPLICATION NO REQUEST RECEIVED ON FILING DATE AGENT'S APPLICANT'S FILE REF.	1 DATUR YEAT SEW CHUONG 19 13062236 1 13/03/2006 1 13/03/2006 1 SD/PAT29/21/3/21/S/SD//SR
U	Please find attached, a copy of the Rec dure and application number marked it	quest Form relating to the above application, with the filing interest in accordance with Regulation 25(1).
	Date z 23/05/2006	the
		(NGOR MCHAMAD HAZMAN B. HAMID) For Registrar of Patents E: hamanigingroup age wit my # 00 - 2765 2125
L	Te : ZARAIHAN W. SHA CO SHEARN BELAN PELOOR, WISMA H NO. 1. IFROR AMPA SYNOB KWAA JUMPUS MALAYSEA.	IORE & CG. IAMZAH-KWONG HING, NG,
	FF 09	The same second of

First Bio fertilizer Inoculants patent filling in Malaysia *Pl20062236*

DIPLÔME 27^E SALON INTERNATIONAL DES INVENTIONS **GENÈVE 1999** Après examen, le jury International a décidé de remette à: INS ENTERPRISE SDN BHD pour l'invention: INS CALIBRE UNE MEDAILLE D'ARGENT Genève, le 3 mai 1999

Silver Medal Award in 27th Geneva International Exhibition of Agricultural Invention & New Techniques 1999.

fppt.com

exemption.

AWARDS & CERTIFICATIONS

AWARDS & CERTIFICATIONS

2011 International Standard Quality Award for Quality Product

2016 Outstanding Achievers Award in Platinum Business Award – in SME Malaysia

2016 Product & Services Excellent Award in Sin Chew Business Excellence Award

2018 Outstanding Fertilizer Quality Product Award in 4th Malaysia Agro Excellence Award.

Model of Entrepreneurs Awards 2018

2018 Model of Entrepreneurs Awards.

2020 Philippine Halal certificate

2023 Malaysia Technology Expo Gold Award. (Collaborate with MPOB)

fppt.com

fppt.com

RESEARCH AND DEVELOPMENT

IBG Manufacturing Sdn Bhd has built the most hi-tech R & D Centre to back its strong R & D initiatives. The R & D centre focuses on cutting edge technology, from extensive research to the development of world-class biofertilizer products with self-owned intellectual property rights and great marketing potential.

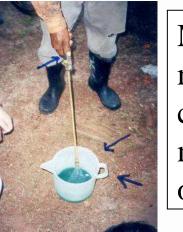
We have established experiment fields as an effort to ensure continuous products upgrade and innovations.

Method of application for Oil Palm

6 Mths - 3 Yrs

3 Yrs – 11 Yrs

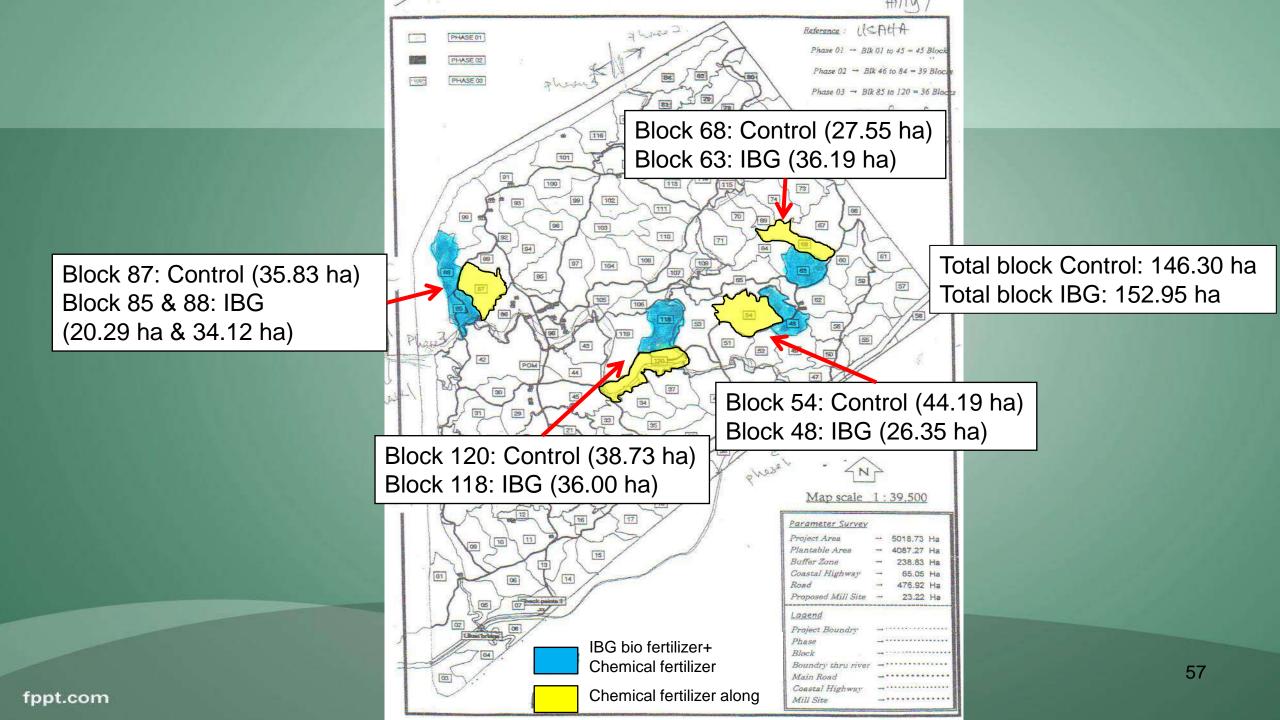
11 Yrs – 25 Yrs


fppt.com

IBG Bio-Fertilizer Application Method

Labor Cost Analysis: One worker 7 working hours able to cover about 2.5 hectare (324 palms)

 Semburan ekar dan betang. Pastikan semburan cukup basah pada kadar 1 lit./ pokok
 Kiri dan semburan pada paras 1 kaki dari paras tanah. Semua bahagian akar atau dicelah pertemuan antara tanah dan betang pokok disembur cukup basah.
 Bagi Pam CKS 16 lit, semburan untuk 16 pokok sahaja.



Measure by measurement container to measure number of stroke per liter.

M D D C M A N PLANTATION Vield Performance Applying BBB BIO FRI ZR

Inland Soil Usaha Sepadan Estate

- 4,000 hectare
- Planted on 2001 to 2002
- Harvesting Interval : 12 to 14 days
- Rainfall : 3,200 to 3,500 mm
- Soil Variety: Sandy, sandy clay, sandy loam, sandy lateritic, hardpan coral etc
- IBG Bio Fertilizer application since 2002

Cost Comparison between Conventional Manuring Program & IBG Bio Fertilizer Manuring Program of Usaha Sepadan Estate

IBG bio fertilizer	RM 345		Conventio	onal Manu	iring Progra	am
(4 L)		No.	Fertilizer	Dosage	Cost/palm	Cost/ha (130 palms)
SOA	RM 750		SOA	1.50 kg	RM 1.13	RM 146.25
RP	RM 1,550	1	MOP	1.50 kg	RM 3.15	RM 409.50
MOP	RM 2,100					
Kieserite	RM 460	2	RP	2.00 kg	RM 3.10	RM 403.00
Borate	RM 3,800	3	SOA	1.50 kg	RM 1.13	RM 146.25
Urea	RM 1,400	3	MOP	1.50 kg	RM 3.15	RM 409.50
8:8:8	RM 5,100	4	Kieserite	1.00 kg	RM 0.46	RM 59.80
7:4:34	RM 2,250	5	Borate	0.10 kg	RM 0.38	RM 49.40
		C	SOA	1.50 kg	RM 1.13	RM 146.25
	6	MOP	1.50 kg	RM 3.15	RM 409.50	
			Total	12.10 kg	RM 16.77	RM 2,179.45

	IBG Bio Ferti	lizer Manuring P	rogram	
No.	Fertilizer	Dosage	Cost/palm	Cost/ha (130 palms)
1	IBG bio fertilizer (4 L)	40 ml	RM 3.45	RM 448.50
2	SOA	0.75 kg	RM 0.56	RM 73.13
2	MOP	2.00 kg	RM 4.20	RM 546.00
3	RP	1.30 kg	RM 2.02	RM 261.95
3	Kieserite	0.70 kg	RM 0.32	RM 41.86
4	Borate	0.100 kg	RM 0.38	RM 49.40
5	SOA	0.75 kg	RM 0.56	RM 73.13
5	MOP	2.00 kg	RM 4.20	RM 546.00
	Total	7.60 kg + 40 ml	RM 15.69	RM 2,039.96
	Total cost saving/palm		RM 1.07	

Usaha Sepadan Estate's Yield Data Collected since 2004 – 2007.

				mt/	ha				
Trial 1	DOP	Stand/ha	28 to 39 months	40 to 51 months	52 to 63 months	64 to 75 months			
			2004	2005	2006	2007 Est			
Treatment (Blk 48) (26.35 ha)	1-Jun	132	8.67	12.60	19.77	25.00			
Chemical (Blk 54) (44.19 ha)	1-Jun	135	6.75	10.43	17.97	23.00	Average		
Yield variance			1.92	2.17	1.80	2.00	1.97		
				mt/	ha				
Trial 2	DOP	Stand/ha	27 to 38 months	39 to 50 months	51 to 62 months	63 to 74 months			
			2004	2005	2006	2007 Est			
Treatment (Blk 63) (36.19 ha)	1-Jul	132	8.23	11.78	18.19	24.00			
Chemical (Blk 68) (27.55 ha)	1-Jul	130	5.77	9.35	15.91	21.00	Average		
Yield variance			2.46	2.42	2.28	3.00	2.54		
		Stand/ha		mt/ha					
Trial 3	DOP		25 to 29 months	30 to 41 months	42 to 53 months	54 to 65 months			
			2004 Aug to Dec	2005	2006	2007 Est			
Treatment (Blk 118) (36.00 ha)	2-Apr	114	1.88	5.55	10.48	18.00			
Chemical (Blk 120) (38.73 ha)	2-Apr	109	1.56	4.79	9.92	16.00	Average		
Yield variance			0.32	0.76	0.56	2.00	0.91		
				mt/	ha				
Trial 4	DOP	Stand/ha	25 to 33 months	34 to 45 months	46 to 57 months	58 to 70 months			
			2004 April to Dec	2005	2006	2007 Est			
Treatment (Blk 85 & 88) (54.41 ha)	1-Dec	110	5.42	7.83	18.82	24.00			
Chemical (Blk 87) (35.83 ha)	1-Dec	105	4.17	6.21	12.41	20.00	Average		
Yield variance			1.25	1.63	6.41	4.00	3.32		

Mean increment: 2.19 mt/ha

fppt.com

IBG bio fertilizer has been fully used on year 2006, but the trial was still maintained until 2007.

Usaha Sepadan Estate's Foliar Data Collected since 2004 – 2006.

	Trial 1						
Foliar nutrients (Dry matter %/p.p.m.)	Block	2004	2005	2006	Mean	Variance	
N	Treatment	3.22	3.15	2.66	3.01	0.37	
IN	Control	2.35	2.90	2.66	2.64	0.37	
Р	Treatment	0.210	0.180	0.151	0.180	0.02	
F	Control	0.170	0.164	0.144	0.160	0.02	
к	Treatment	1.24	1.24	1.11	1.20	0.10	
ĸ	Control	0.86	1.31	1.11	1.09	0.10	
Mg	Treatment	0.39	0.36	0.31	0.35	0.04	
IWIG	Control	0.28	0.36	0.31	0.32	0.04	
Co.	Treatment	0.50	0.57	0.59	0.55	-0.07	
Са	Control	0.74	0.53	0.59	0.62	-0.07	
В	Treatment	28.00	29.00	17.40	24.80	0.67	
D	Control	28.00	28.00	16.40	24.13	0.07	

	Trial 2						
Foliar nutrients (Dry matter %/p.p.m.)	Block	2004	2005	2006	Mean	Variance	
N	Treatment	2.52	2.72	2.71	2.65	-0.19	
N	Control	2.79	3.08	2.64	2.84	-0.19	
Р	Treatment	0.170	0.170	0.155	0.170	0 02	
F	Control	0.190	0.214	0.139	0.180		
к	Treatment	1.47	1.18	1.02	1.22	0.08	
ĸ	Control	1.30	1.13	0.99	1.14		
Ma	Treatment	0.39	0.33	0.35	0.36	0.01	
Mg	Control	0.33	0.39	0.33	0.35	0.01	
Ca	Treatment	0.74	0.54	0.59	0.62	0.02	
Са	Control	0.61	0.63	0.58	0.61	0.02	
в	Treatment	28.00	21.00	17.00	22.00	6.00	
P	Control	18.00	15.00	15.00	16.00	0.00	

fppt.com

Usaha Sepadan Estate's Foliar Data Collected since 2004 – 2006.

	Trial 3						
Foliar nutrients (Dry matter %/p.p.m.)	Block	2004	2005	2006	Mean	Variance	
N	Treatment	2.64	2.60	2.63	2.62	-0.08	
N	Control	2.75	2.84	2.52	2.70	-0.00	
Р	Treatment	0.170	0.210	0.155	0.180	0.01	
F	Control	0.160	0.215	0.135	0.170	0.01	
к	Treatment	1.26	1.17	1.05	1.16	0.00	
ĸ	Control	1.27	1.16	1.06	1.16	0.00	
Ma	Treatment	0.33	0.42	0.43	0.39	0.01	
Mg	Control	0.31	0.41	0.42	0.38	0.01	
60	Treatment	0.58	0.57	0.65	0.60	0.03	
Са	Control	0.56	0.59	0.56	0.57	0.03	
P	Treatment	20.00	18.00	20.00	19.33	0.07	
В	Control	27.00	17.00	16.00	20.00	-0.67	

	Trial 4											
Foliar nutrients (Dry matter %/p.p.m.)	Block	2004	2005	2006	Mean	Variance						
N	Treatment	2.55	2.89	2.65	2.70	-0.14						
N	Control	2.79	3.08	2.64	2.84	-0.14						
Р	Treatment	0.160	0.200	0.155	0.170	0 01						
F	Control	0.190	0.214	0.139	0.180							
к	Treatment	1.29	1.09	1.03	1.14	0.00						
K	Control	1.30	1.13	0.99	1.14	0.00						
Ma	Treatment	0.36	0.39	0.32	0.36	0.04						
Mg	Control	0.33	0.39	0.33	0.35	0.01						
Co	Treatment	0.72	0.56	0.54	0.61	0.00						
Ca	Control	0.61	0.63	0.58	0.61	0.00						
В	Treatment	25.00	18.00	15.00	19.33	2.22						
	Control	18.00	15.00	15.00	16.00	3.33						

Conclusion

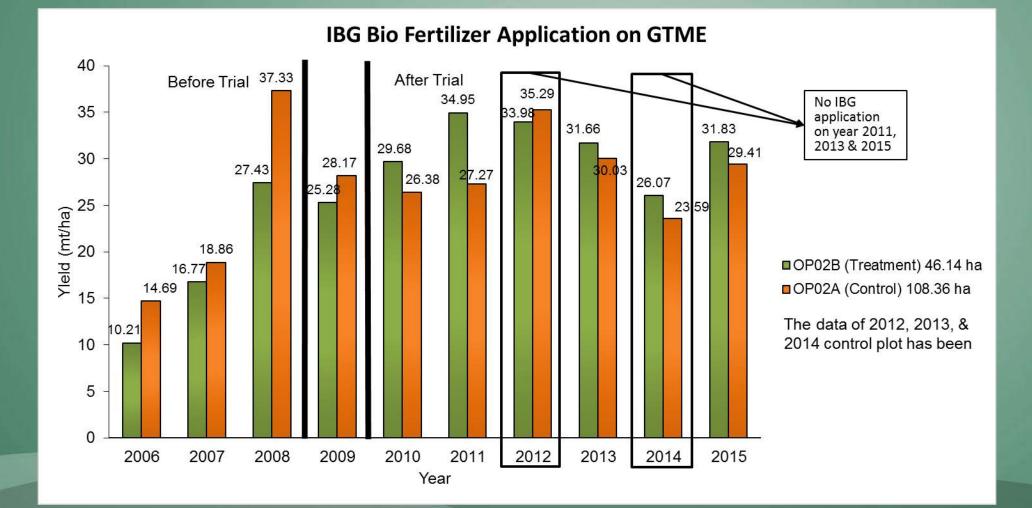
			Control				
	Fertilizer		Cost/palm	Cost/ł	na (130 palms)		
	12.10 kg		RM 16.77		RM 2,179.45		
	Round/year	Labou	ir cost/round/ha	6			
	6		RM 8		RM 48		
		Т	otal cost/ha	RI	M 2,227.45		
6 RM 8 RM 48 Total cost/ha RM 2,227.45 Treatment Fertilizer Cost/palm Cost/ha (130 palms)							
			Treatment				
	Fertilizer		Cost/palm	Ì	Cost/ha (130 p	alms)	
Chemic	al fertilizer 7.	60 kg	RM 12.24		RM 1,591.4	46	
	IBG 40 ml		RM 3.45		RM 448.5	0	
	Round/year		Labour cost/rou	nd/ha	6 round/h	а	
	5		RM 8		RM 40		
			Total cost/h	a	RM 2,079.	96	

Extra yield (mt) /ha	2.19
Average price/mt	RM 700.00
Revenue	RM 1,533.00
Cost variance /ha	RM 147.49
Extra earning /ha	RM 1,680.49

Yield data of Usaha Sepadan

		2008Prod	2008	2007 Productive stand	2007	May2005-Apr2006		May2006-Apr2007		May2007-Apr2008	
Phase	HA	Palm	S/H	Palm	S/H	Yield (MT)	No. Bunches	Yield (MT)	No. Bunches	Yield (MT)	No. Bunches
Phase1	1,591.36	207,825	131	194,383	122	21,861	3,642,683	29,033	3,793,036	43,723	5,109,813
Phase2	1,302.43	159,229	122	145,413	112	16,050	2,738,255	22,110	2,808,184	36,258	4,236,127
Phase3	1,193.42	131,801	110	119,255	100	9,419	1,751,543	14,456	2,087,504	26,660	3,220,672
Total	4,087.21	498,855	122	459,051	112	47,330	8,132,481	65,599	8,688,724	106,641	12,566,613

Yield data of Usaha Sepadan

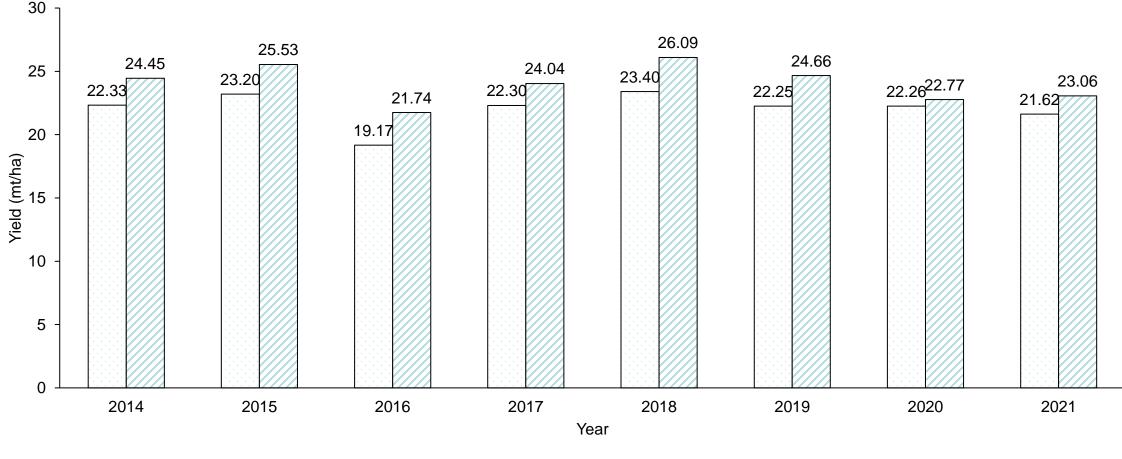

			ABW			В	Bunch/palm			Yield/HA			Yield/130palms		
Phase	HA	Date Planted	M05– A06	M06– A07	M07– A08	M05– A06	M06– A07	M07– A08	M05– A06	M06– A07	M07– A08	M05– A06	M06– A07	M07– A08	
Phase 1	1,591.36	Jan01 to Apr01	6.00 Kg	7.65 Kg	8.56 Kg	18.74	19.51	24.59	13.74 Mt	18.24 Mt	27.47 Mt	14.62 Mt	19.42 Mt	27.35 Mt	
Phase 2	1,302.43	Apr01 to Nov01	5.86 Kg	7.87 Kg	8.56 Kg	18.83	19.31	26.60	12.32 Mt	16.98 Mt	27.84 Mt	14.35 Mt	19.77 Mt	29.60 Mt	
Phase 3	1,193.42	Nov01 to Apr02	5.38 Kg	6.93 Kg	8.28 Kg	14.69	17.50	24.44	7.89 Mt	12.11 Mt	22.34 Mt	10.27 Mt	15.76 Mt	26.30 Mt	
Total	4,087.21		5.82 Kg	7.55 kg	8.49 kg	17.72	18.93	25.19	11.58 Mt	16.05 Mt	26.09 Mt	13.40 Mt	18.58 Mt	27.79 Mt	

IBG Trial application on Usaha Sepadan estate has started since year 2003. Since year 2003 – 2006, the average yield improvement is 2.19 mt/ha. At year 2006, IBG Bio Fertilizer has been fully used on the estate.

GENTING TANAH MERAH ESTATE

- LOCATION: Tanah Merah, Johor
- HECTAREAGE: Control plot 108.36 ha
 Treatment plot 46.14 ha
- YEAR OF PLANTING : 2002
- IBG biofertilizer application since 2008

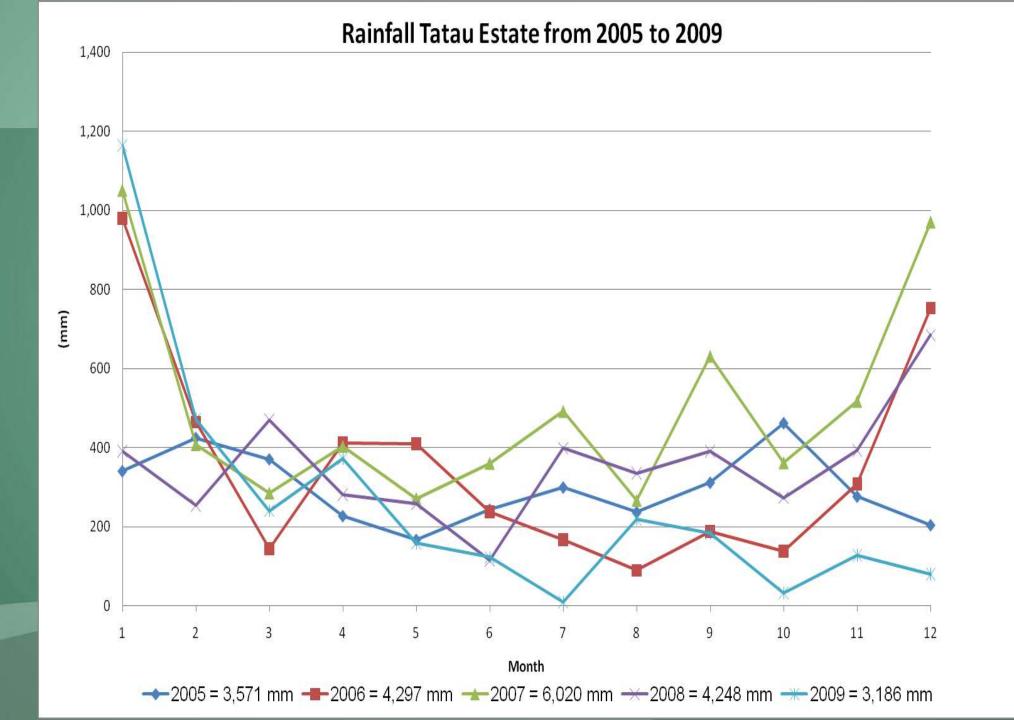
IBG biofertilizer application at GTME



BORNEO AGRO RESOURCES SDN. BHD.

- LOCATION: Maskat estate, Bintulu, Sarawak.
- HECTAREAGE: Control Plot: 403.63 ha 2018; 318.13 ha 2021
 Treatment Plot: 339.57 ha 2018; 560.73 ha 2021
- YEAR OF PLANTING : 2003 2005
- IBG biofertilizer application since July 2014

IBG biofertilizer application at Borneo Agro Resources


IBG Biofertilizer application on Maskat Estate

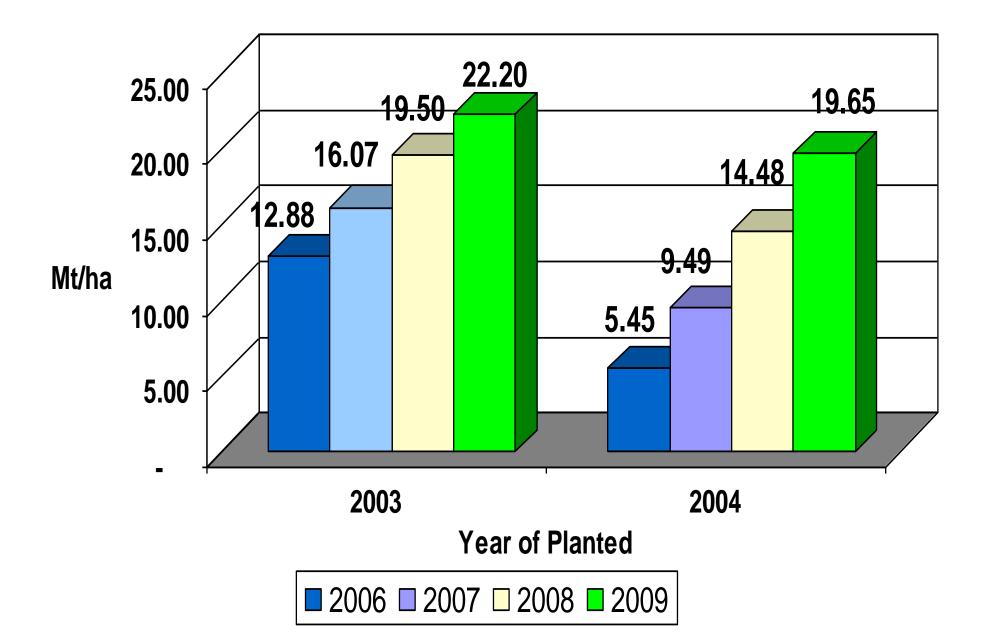
□ Control (318.13 ha) □ IBG (560.73 ha)

Peat Soil

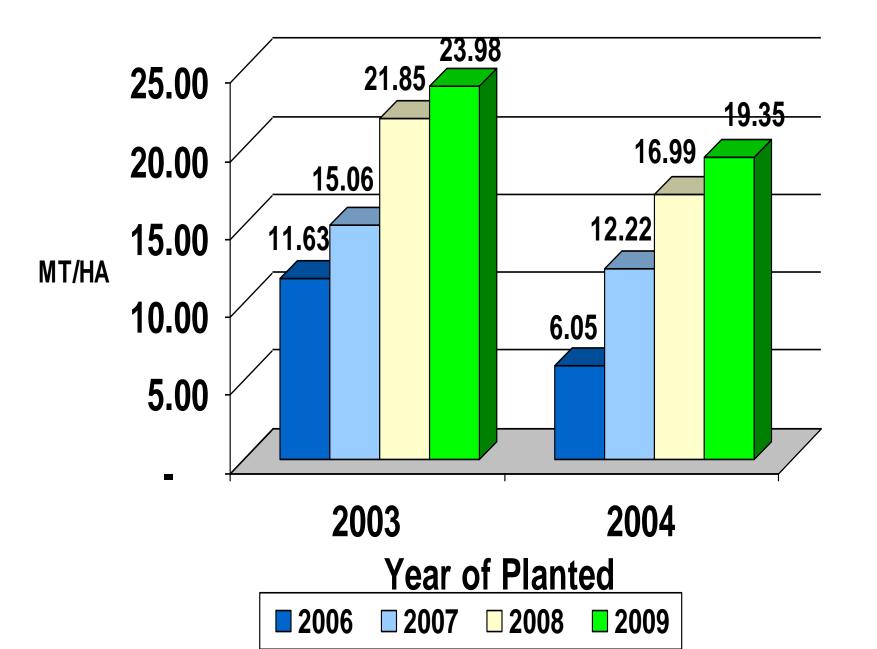
- Tatau Estate (5,600 ha planted since 2004)
- Semanok Estate (2,700 ha planted since 2004)
- Tamar Estate (4,000 ha planted since 2001 to 2002 with 1,300 ha of Alan Batu)
- IBG Bio Fertilizer application on these estates have been started at year 2007 after the appealing result from Usaha Sepadan estate.

fppt.com

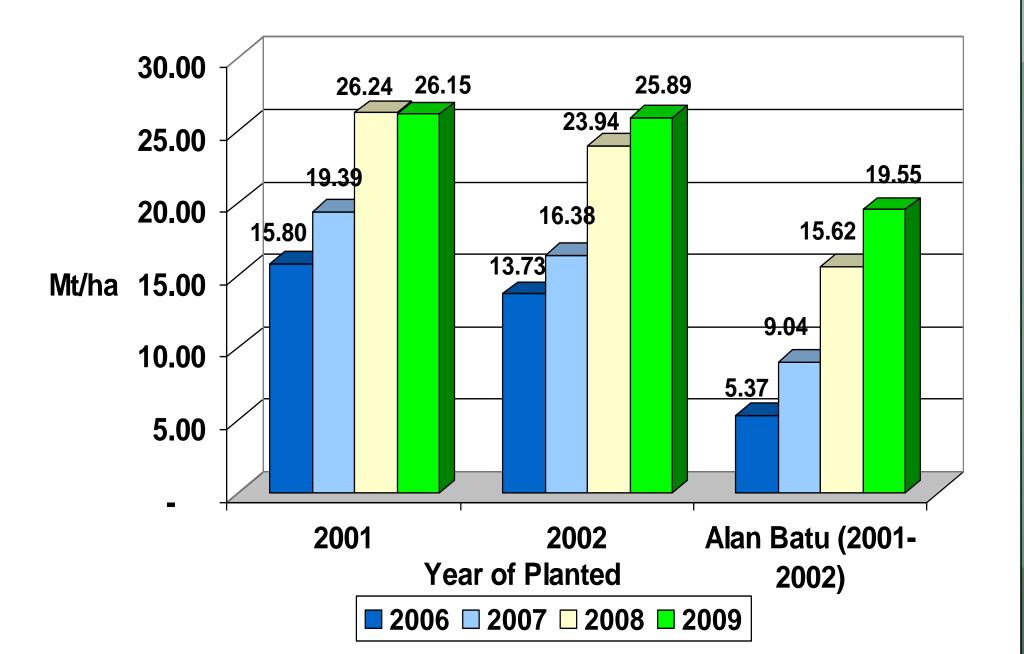
70


Cost Comparison between Conventional Manuring Program & IBG Bio Fertilizer Manuring Program of Tatau Estate

IBG bio fertilizer (4 L)	RM 345		
SOA	RM 750		
RP	RM 1,550		
MOP	RM 2,100		
Kieserite	RM 460		
Borate	RM 3,800		
Urea	RM 1,400		
8:8:8	RM 5,100		
7:4:34	RM 2,250		


Conventional Manuring Program							
No.	Fertilizer	Dosage	Cost/palm	Cost/ha (150 palms)			
1	Urea	0.50 kg	RM 0.70	RM 105.00			
	MOP	2.00 kg	RM 4.20	RM 630.00			
2	Urea	0.50 kg	RM 0.70	RM 105.00			
	MOP	2.00 kg	RM 4.20	RM 630.00			
3	RP	1.00 kg	RM 1.55	RM 232.50			
4	ZnCu	0.125 kg	RM 0.64	RM 95.63			
	Borate	0.15 kg	RM 0.57	RM 85.50			
5	Urea	0.50 kg	RM 0.70	RM 105.00			
	MOP	2.00 kg	RM 4.20	RM 630.00			
	Total	8.78 kg	RM 17.46	RM 2,618.63			

IBG Bio Fertilizer Manuring Program							
No.	Fertilizer	Dosage	Cost/palm	Cost/ha (150 palms)			
1	Packed MOP Subsoil	5.00 kg	RM 10.50	RM 1,575.00			
2	IBG bio fertilizer (4 L)	20 ml	RM 1.73	RM 258.75			
3	ZnCu	0.125 kg	RM 0.64	RM 95.63			
	Borate	0.15 kg	RM 0.57	RM 85.50			
4	IBG bio fertilizer (4 L)	20 ml	RM 1.73	RM 258.75			
	Total	5.28 kg + 40 ml	RM 15.16	RM 2,273.63			
	Total cost saving/palm		RM 2.30				


Tatau Yield Production 2006 to 2009

SEMANOK YIELD PRODUCTION 2006 TO 2009

Tamar Yield Production 2006 to 2009

Conclusion

Control								
Fertilizer	Cost/palm	Cost/ha (150 palms)						
8.78 kg	RM 17.46	RM 2,618.63						
Round/year	Labour cost/round/ha	6 round/ha						
5	RM 8	RM 40						
	Total cost/ha	RM 2,658.63						

Treatment						
Fertilizer	Cost/ha (150 palms)					
Chemical fertilizer 5.28 kg	RM 11.71	RM 1,756.13				
IBG 40 ml	RM 3.45	RM 517.50				
Round/year	Labour cost/round/ha	6 round/ha				
4	RM 8	RM 32				
	Total cost/ha	RM 2,305.63				

Extra Yield (mt) /ha	2.19
Average price/mt	RM 700.00
Revenue	RM 1,533.00
Cost Variance /ha	RM 353.00
Extra earning /ha	RM 1,886.00

WOODMAN KUALA BARAM ESTATE SDN. BHD.

(616631-U)

Lot 306, Jalan Krokop, P. O. Box 1437, 98008 Miri, Sarawak. Tel: 085-419321 (8 Lines) Fax: 085-435470 / 416759 / 420145

DATE : 25th May 2010

To Whom It May Concern:

This serve to certify that the IBG Microorganism Bio Fertilizers is a high technology product which Woodman Group Of Companies are using such as Usaha Sepadan Estate on mineral soil. Tamar Estate, Tatau Estate and Semanok Estate are on peat area for several years, area coverage approximately **18,000 Ha since** 2003 till at present.

After using this IBG-BIO Fertilizers product, it is proven that this product really benefits us through cost saving at 20% generally, maintain and improve its productivity, reducing labour cost, improve the soil structure and maintain adequate soil moisture without extra cost where the quantity of micro-organism in the soil create healthy natural environment for the palm growth where we reduce our chemical cost at 30% generally.

We do not hesitate to recommend any clients or company to use this product where it is mutual benefit for long term purposes.

Thank you,

Yours truly, wooman kuala baram estate SDN. BHD.

JOBENAR RAYA SDN. BHD.

(Subsidiary company of Mafrica Maytrading Sdn. Bhd.)

- LOCATION: Ladang Jobenar Raya Sdn. Bhd., Bintulu, Sarawak.
- HECTAREAGE: Control Plot 64.90 ha
 Treatment Plot 91.10 ha
- SOIL SERIES: Anderson 3 (Deep Peat)
- YEAR OF PLANTING: 2001

Comparison of yield production (2006 - 2008) conducted at Jobenar Raya Estate.

Plot	Total		mt/ha	
FIOL	Ha	2006	2007	2008
Control	64.90	14.91	16.61	18.93
Treatment	91.10	17.66	22.91	26.40
Difference		2.75	6.30	7.47

Cost Comparison between Conventional Manuring Program & IBG Bio Fertilizer Manuring Program of Jobenar Raya Sdn. Bhd.

IBG bio fertilizer (4 L)	RM 345
SOA	RM 750
RP	RM 1,550
MOP	RM 2,100
Kieserite	RM 460
Borate	RM 3,800
Urea	RM 1,400
8:8:8	RM 5,100
7:4:34	RM 2,250

	Conventional Manuring Program							
No.	o. Fertilizer Dosage Cost/palm Cost/ha (148 pal							
1	7:4:34	5.00 kg	RM 11.25	RM 1,665.00				
2	Urea	1.00 kg	RM 1.40	RM 207.20				
3	MOP	2.00 kg	RM 4.20	RM 621.60				
4	Chelated ZnCuB	0.15 kg	RM 0.77	RM 113.22				
	Total	8.15 kg	RM 17.62	RM 2,607.02				

IBG Bio Fertilizer Manuring Program							
No.	Fertilizer	Dosage	Cost/palm	Cost/ha (148 palms)			
1	IBG OP**	50 ml	RM 4.31	RM 638.25			
2	7:4:34	3.00 kg	RM 6.75	RM 999.00			
3	MOP	2.50 kg	RM 5.25	RM 777.00			
4	Chelated ZnCuB	0.15 kg	RM 0.77	RM 113.22			
	Total	5.65 kg + 50 ml	RM 17.08	RM 2,527.47			
	Total cost saving/palm		RM 0.54				

Conclusion

Control					
Fertilizer	Cost/palm	Cost/ha (148 palms)			
8.15 kg	RM 23.42	RM 2,607.02			
Round/year	Labour cost/round/ha	6 round/ha			
4	RM 8	RM 32			
	Total cost/ha	RM 2,639.02			

Treatment							
Fertilizer Cost/palm Cost/ha (148 pal							
Chemical fertilizer 5.65 kg	RM 12.77	RM 1,889.22					
IBG 50 ml	RM 4.31	RM 638.25					
Round/year	Labour cost/round/ha	6 round/ha					
4	RM 8.00	RM 32					
	Total cost/ha	RM 2,559.47					

Extra Yield (mt) /ha	5.51
Average price/mt	RM 700.00
Revenue	RM 3,857.00
Cost Variance /ha	RM 79.55
Extra earning /ha	RM 3,936.55

PALM GROUP HOLDINGS SDN.BHD. (462042 - M)

(Member of Mafrica Group of Companies) 25.1-25.2,Level 25,Wisma Sanyan, No 1,Jalan Sanyan, 96000 Sibu,Sarawak,Malaysia Telephone:+ 6084-332155 / 0198277155,Fax+ 6084-332153

28th Aug 2010

TO WHOM IT MAY CONCERN

Ladang Jobenar Raya Sdn Bhd commenced using IBG Oil Palm Bio Fertilizer combined with Chemical Fertilizer for oil palm growth and sustainable yield improvement in 2006 until now.

Over the past 4 1/2 years of usage of IBG Bio- Fertilizer, the average yield increase was 18.25% as compared over the control blocks.

For sustainable palm oil production, integrated use of chemical and bio-fertilizer has shown to have a significant improvement in sustaining soil health through earthworm cast formation on the soil surface for oil palm production, reduction dosage of NPK by positive improvement in terms of foliar nutrients level, cost saving and good yield improvement by about 20% over the complete usage of conventional fertilizers.

Currently, our group of eight peat and mineral soils oil palm estates covering a hectarage of 18,885 10 hectares is using the IBG Bio Fertilizers on a large and commercial scale.

For best results, IBG Bio-Fertilizer should be integrated with mineral fertilizers and the latter can be reduced by 20 - 30%

Yours faithfully,

2015 IBG BIO FERTILIZER USAGE IN MAFRICA

Company	Planted Ha	Phase	Date of Planting	IBG Bio Fertilizer Usage/palm/year	IBG Bio Fertilizer Used
Palmcol Sdn. Bhd	5,190.20	5	2007 - 2010	50 ml	6,647 bottles
Jobenar Raya Sdn. Bhd.	2,832.07	4	2000, 2004 - 2005	50 ml	5,890 bottles
Jobenar Balingian					1,614 bottles
Rosebay Enterprise Sdn. Bhd. (Rosebay 2)	2,507.97	2	2005 - 2006	50 ml	3,574 bottles
Palmraya Pelita Sikat Platation	1,736.00	2	2007 - 2010	50 ml	3,002 bottles
Palmraya Pelita Meruan Plantation	4,820.07	6	2000 - 2010	50 ml	7,404 bottles
Victoria Square Development Sdn. Bhd.	3,657.30	2	2008 - 2010	50 ml	2,698 bottles
Saradu Plantations Sdn. Bhd	Phase 1: 2,000 ha				4,297 bottles
Worldsign Harvest Sdn. Bhd.	6,000.00				5,763 bottles
Palmraya Pelita Sepapa Oya Plantation Sdn. Bhd.					1,468 bottles
Titasa Sdn. Bhd.					152 bottles
Total	40,000.00				42,509 bottles

2016 IBG BIO FERTILIZER USAGE IN MAFRICA

Company	Planted Ha	Phase	Date of Planting	IBG Bio Fertilizer Usage/palm/year	IBG Bio Fertilizer Used
Palmcol Sdn. Bhd	5,190.20	5	2007 - 2010	50 ml	6,888 bottles
Jobenar Raya Sdn. Bhd.	2,832.07	4	2000, 2004 - 2005	50 ml	3,440 bottles
Jobenar Balingian					5,040 bottles
Rosebay Enterprise Sdn. Bhd. (Rosebay 2)	2,507.97	2	2005 - 2006	50 ml	3,574 bottles
Palmraya Pelita Sikat Platation	1,736.00	2	2007 - 2010	50 ml	2,880 bottles
Palmraya Pelita Meruan Plantation	4,820.07	6	2000 - 2010	50 ml	7,544 bottles
Victoria Square Development Sdn. Bhd.	3,657.30	2	2008 - 2010	50 ml	4,296 bottles
Saradu Plantations Sdn. Bhd	Phase 1: 2,000 ha				6,704 bottles
Worldsign Harvest Sdn. Bhd.	6,000.00				7,802 bottles
Palmraya Pelita Sepapa Oya Plantation Sdn. Bhd.					2,364 bottles
Titasa Sdn. Bhd.					120 bottles
Total	40,000.00				50,152 bottles

2017 IBG BIO FERTILIZER USAGE IN MAFRICA

Company	Planted Ha	Phase	Date of Planting	IBG Bio Fertilizer Usage/palm/year	IBG Bio Fertilizer Used
Palmcol Sdn. Bhd	5,190.20	5	2007 - 2010	50 ml	6,808 bottles
Jobenar Raya Sdn. Bhd.	2,832.07	4	2000, 2004 - 2005	50 ml	4,632 bottles
Jobenar Balingian					5,668 bottles
Rosebay Enterprise Sdn. Bhd. (Rosebay 2)	2,507.97	2	2005 - 2006	50 ml	3,022 bottles
Palmraya Pelita Sikat Platation	1,736.00	2	2007 - 2010	50 ml	3,066 bottles
Palmraya Pelita Meruan Plantation	4,820.07	6	2000 - 2010	50 ml	3,792 bottles
Victoria Square Development Sdn. Bhd.	3,657.30	2	2008 - 2010	50 ml	2,402 bottles
Saradu Plantations Sdn. Bhd	Phase 1: 2,000 ha				6,660 bottles
Worldsign Harvest Sdn. Bhd.	6,000.00				6,836 bottles
Palmraya Pelita Sepapa Oya Plantation Sdn. Bhd.					1,064 bottles
Titasa Sdn. Bhd.					0 bottle
Total	40,000.00				43,964 bottles

PRIORITY POTENTIAL SDN. BHD.

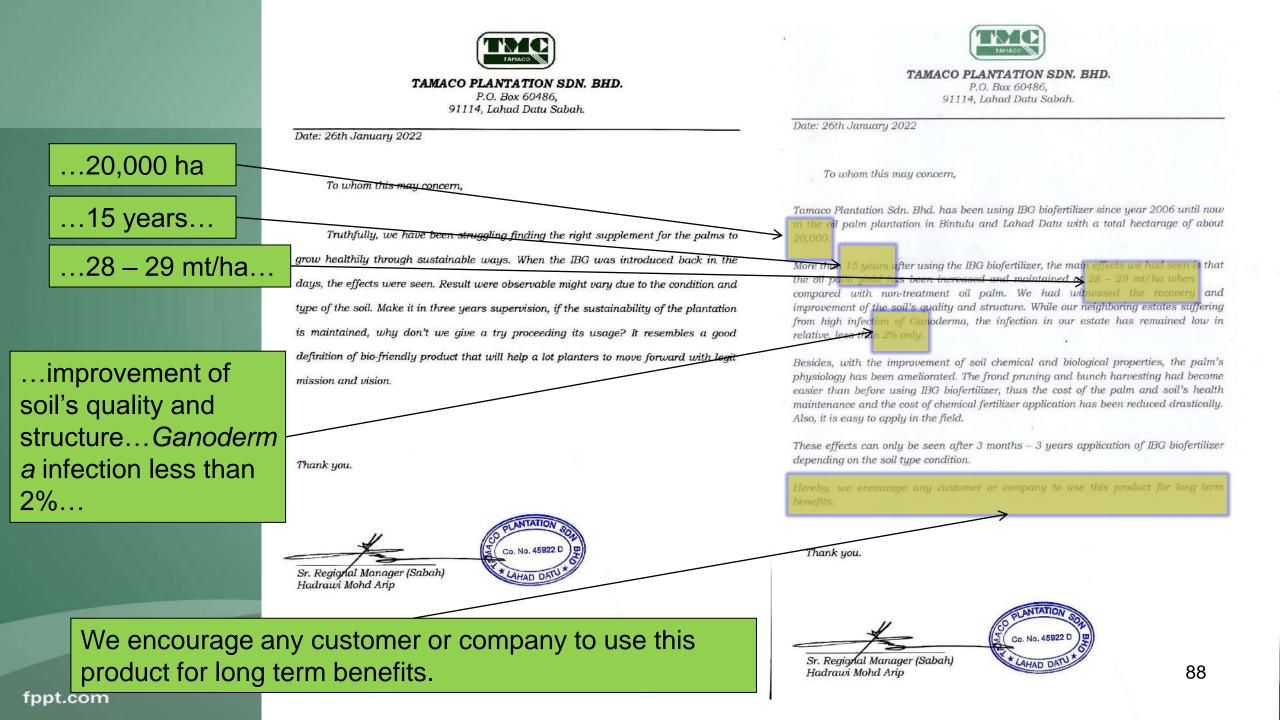
(Subsidiary company of Golden Agro Sdn. Bhd.)

- LOCATION : Priority Potential estate, Mukah, Sarawak.
- HECTAREAGE : Control plot 156.78 ha
 Treatment plot 253.24 ha
- YEAR OF PLANTING : 2012 2013
- IBG biofertilizer application since January 2017

IBG biofertilizer application at Priority Potential

			mt/ha												
BLOCK	YOP	HA	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Total
K1 (Control)	Nov-12	16.00	0.34	0.20	0.40	0.30	0.27	0.57	0.80	0.81	0.76	0.78	0.74	0.82	6.78
K2 (Control)	Nov-12	15.97	0.56	0.39	0.80	0.59	0.47	0.73	1.21	1.40	1.04	1.04	1.02	1.04	10.29
K9 (Control)	Jan-13	19.97	0.34	0.28	0.39	0.42	0.49	0.86	0.69	1.20	0.83	0.99	0.92	0.93	8.35
L1 (Control)	Nov-12	23.56	0.59	0.31	0.59	0.78	0.76	1.01	1.14	1.68	1.43	1.48	1.11	1.12	12.00
L8 (Control)	Nov-12	20.00	0.39	0.28	0.30	0.55	1.31	1.03	0.72	1.31	1.20	1.48	1.06	0.72	10.33
L9 (Control)	Dec-12	20.00	0.46	0.38	0.33	0.45	1.22	0.88	0.70	0.94	1.00	1.51	0.79	1.20	9.86
L10 (Control)	Dec-12	20.00	0.48	0.36	0.34	0.44	0.78	1.44	0.73	1.48	1.07	1.18	1.99	0.91	11.20
N6A (Control)	Sep-12	6.30	0.61	0.58	0.50	0.82	0.64	1.63	1.30	2.45	1.52	1.81	1.50	0.92	14.27
N8 (Control)	Sep-12	14.98	0.65	0.51	0.39	0.62	0.60	1.40	1.29	2.23	1.67	1.39	1.50	0.73	12.98
A	verage		0.49	0.37	0.45	0.55	0.73	1.06	0.95	1.50	1.17	1.30	1.18	0.93	10.67
K3 (IBG)	Dec-12	15.94	0.48	0.31	0.64	0.56	0.50	0.88	1.37	1.57	1.13	1.15	1.07	1.05	10.70
K4 (IBG)	Jan-13	15.94	0.50	0.30	0.68	0.52	0.49	1.00	1.30	1.80	1.17	1.28	1.07	1.22	11.33
K5 (IBG)	Jan-13	15.90	0.46	0.28	0.65	0.67	0.68	1.06	1.57	2.11	1.20	1.24	1.16	1.28	12.36
K6 (IBG)	Jan-13	20.80	0.66	0.40	0.91	0.75	0.70	1.07	1.40	1.90	1.25	1.26	1.16	1.47	12.93
K7 (IBG)	Jan-13	20.00	0.73	0.45	1.13	1.14	1.19	2.03	1.62	2.17	1.57	1.57	1.55	1.58	16.72
K8 (IBG)	Jan-13	20.04	0.39	0.29	0.35	0.43	0.52	1.17	0.72	1.28	1.08	1.24	1.27	1.22	9.97
L2 (IBG)	Nov-12	23.56	0.89	0.82	0.95	1.12	0.99	1.26	1.42	1.42	1.52	1.78	1.18	1.31	14.65
L3 (IBG)	Nov-12	23.56	0.86	0.68	0.98	0.87	1.18	1.61	1.43	1.75	1.48	1.66	1.10	1.32	14.93
L4 (IBG)	Nov-12	23.56	0.73	0.60	0.86	0.49	1.53	1.62	1.43	1.78	1.51	1.64	1.14	1.26	14.60
L5 (IBG)	Nov-12	23.56	0.68	0.64	0.91	0.50	1.81	1.62	1.39	1.90	1.48	1.80	1.27	1.14	15.14
L6 (IBG)	Nov-12	20.00	0.58	0.53	0.74	0.45	1.52	1.36	1.32	1.97	1.50	1.71	1.34	1.26	14.28
L7 (IBG)	Nov-12	20.00	0.57	0.45	0.94	0.61	1.82	1.45	1.39	1.82	1.43	1.93	1.27	0.81	14.49
N7 (IBG)	Aug-12	10.38	0.74	0.75	0.74	1.34	1.06	1.97	1.79	2.56	1.71	1.97	1.58	0.92	17.13
A	verage		0.64	0.50	0.81	0.73	1.08	1.39	1.40	1.85	1.39	1.56	1.24	1.22	13.79

PHOENIX PERKS SDN. BHD.


(Subsidiary company of Ngan & Ngan Holdings.)

- LOCATION: Bintulu, Sarawak.
- HECTAREAGE : Control plot 0.00 ha
 Treatment plot 1,395.55 ha
- YEAR OF PLANTING : Various

fppt.com

• IBG biofertilizer application since August 2022

Year	Total mt	Total ha	Total mt/ha
2017	802.87	1,395.55	0.58
2018	10,789.06	1,395.55	7.73
2019	21,845.30	1,395.55	15.65
2020	24,975.68	1,395.55	17.90
2021	36,158.67	1,395.55	25.91
2022 (start using IBG at August - September 2022)	30,574.61	1,395.55	21.91
2023 (until September)	31,733.76	1,395.55	22.74

Our international business

206,572 ha 619,716 liter Research Research Research Research Research Research Research Research 45,000 ha 20,000 ha 40,000 ha 8,000 ha 30,000 ha 10,000 ha And others like Kwantas, SALCRA, Sawit Kinabalu, etc

IBG Manufacturing Sdn. Bhd.

生物良菌肥料 FFDTILIZER

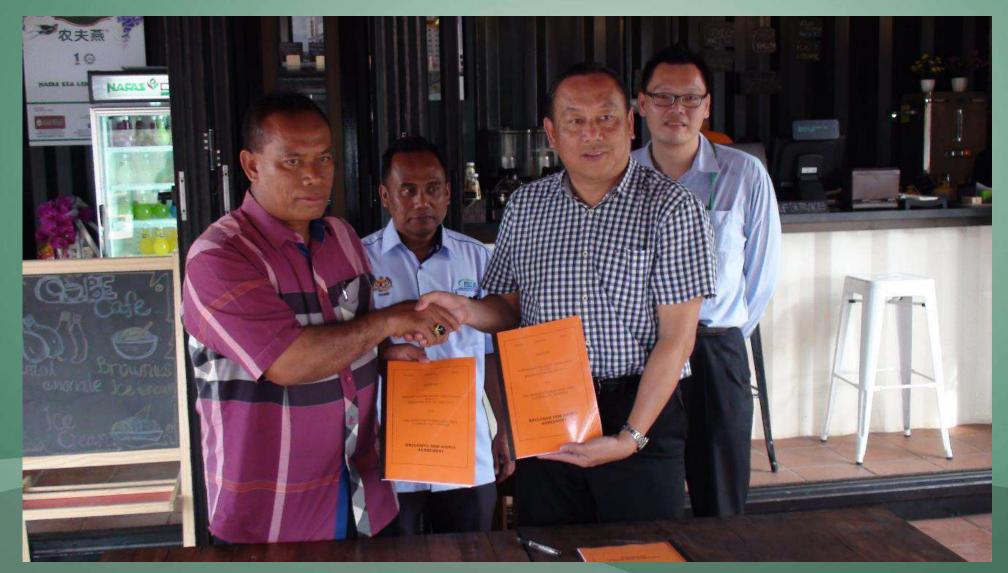
www.ibgbiofertilizer.com.my

WE WELCOME YOU TO VISIT OUR FACTORY!

ISO 9001 • ISO/IEC 17025 • BioNexus

Corporate visit from Genting Plantations Berhad

Corporate visit from Rimbunan Hijau Group Tan Sri Datuk Sir Tiong Hiew King


1^{hb} Jun 2016, Wednesday, visit from DG MARDI Datuk Dr. Sharif, DG DOA Dato' Ahmad Zakaria, BOD NAFAS Tuan Haji Ahmad

6^{hb} Disember 2016, Tuesday, visit from Chairman NAFAS Dato' Seri Saipol

8^{hb} Disember 2016, Thursday, signing ceremony between NAFAS-IBG

31^{hb} Mac 2017, Friday, visit from Datu Lai, KP Jabatan Pertanian Sarawak

Visit from MD Golden Star Ace Mr. Kevin Ko Yeu Ying

9th August 2019, Friday, visit from Ministry of Plantation Industries and Commodities

14th October 2019, Monday, visit TAMACO with MPOB

24th June 2020, Wednesday, visit from chairman Incorporated Society of Planters, Datuk Haji Daud bin Haji Amatzin

9th July 2020, Thursday, visit from Secretory General Ministry of Agriculture and Food Industries Dato' Zainal Azman Bin Abu Seman

30th July 2020, Thursday, visit from Ekovest

23th September 2021, Thursday, visit from Sunway University Professor Leong

13th & 27th October 2021, visit from CEO MADA corp Mr. Mohamad Anuar Bin Pir Mohamad and Chairman MADA YB Ahmad Tarmizi Bin Sulaiman

13th October 2021, Rabu, visit from Universiti Malaya Prof. Ling Tau Chuan and Dr. Rosazlin Abdullah

18th October 2021, Monday, visit from DG MPOB Datuk Dr. Ahmad Parveez Hj Ghulam Kadir, Director of Biology & Sustainability Research Division MPOB, Dr. Idris Abu Seman, Head of Plant Pathology And Biosecurity, Dr. Mohd. Hefni bin Rusli

2nd November 2021, Tuesday, visit from Kwantas CEO Mr. Alvin Kwan Ngen Wah, PC Mr. Sri Renganathan S. Muthiah

8th April 2022, Friday, visit from Minister for Modernisation of Agriculture & Regional Development, Sarawak, YB Dato Sri Dr. Stephen Rundi Utom

26th July 2022, Tuesday, visit from SALCRA management team

ablofa

COL

7th September 2022, Wednesday, visit from Nottingham University Professor Dr. Lam Hon Loong

7th October 2022, Friday, visit from Sime Darby Plantation Research Sdn. Bhd. Dr. Sim Choon Cheak and Dr. Teh Chee Keng

27th October 2022, Thursday, visit from United Malacca Berhad CEO Mr. Young, PC Mr. Low and MPOB

19th December 2022, Monday, Sawit Kinabalu Group MD Datuk Bacho Jansie

13th January 2023, Thursday, visit from Department of Agriculture

30th January 2023, Monday, visit from Director of Fertilizer Technology Programme, Soil Science, Water & Fertilizer Research Centre, Dr. Rosliza Binti Jajuli, Deputy Director Dr. Ganisan Krishnen, and Director of Paddy and Rice Research Centre, Dr. Mohd. Syaifudin Bin Abdul Rahman

3rd May 2023, Wednesday, visit from Yuwang Group

6th June 2023, Tuesday, visit from FGV, lead by Head of Agronomy & Strategic Crops, Dr. Then Kek Hoe

2nd August 2023, Wednesday, visit from KLK CEO TSDS Lee Oi Hian, AAR director Mr. Tey Seng Heng, deputy director Dr. Tasren

19th October 2023, Thursday, visit from FGV Fertilizer lead by CEO En. Hamdan

Thank you **IBG Manufacturing Sdn. Bhd.**

Address:

Tel No.: Fax No.: Website: **Email:**

fppt.com

No. 3, Jalan TPP 3, Taman Perindustrian Putra, 47130 Puchong, **Selangor Darul Ehsan.** 603 - 8066 2875 603 - 8052 1303 Coordinate: N 2.971074, E 101.575499 (N 2°58'15.8664", E 101°34'31.7958") www.ibgbiofertilizer.com.my/www.ibgv.com.my info@ibgv.com.my/siawping@ibgv.com.my